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Prescriptive 
Specifications

• Some people love their prescriptive specifications
• They are referred to 

some as recipe 
specifications

• Frequently they focus 
on slump, air and 
compressive strength

• If this works for you
that’s fine

• The problem is there are 
cases it does not
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Is Concrete Durable

• Alkali Silica Reactivity

Alkali Silica Reactivity (www.fhwa.dot.gov) 

Freeze-Thaw Damage (www.cement.org) 

Shrinkage Cracking (www.carasquilloassociates.com) 

Joint Damage (Weiss et al. 2005, Byers 2015) 
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OSU ETG Contributions

TARGET: Improve
Long-Term Durability

• Freeze-Thaw
• Salt Damage
• Chloride Ingress
• ASR

• Shrinkage & 
Cracking

Worked to develop an 
overall framework

Identified sections
• 6.5
• 6.6
• 6.7
• 6.8

This is work done prior to the current pooled fund and led to a large portion of AASHTO PP-84 
Weiss et al. 2015
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Four Step Approach
Toward Performance

Assess 
Performance 
w/ Standard

Tests

Tests should be:
• easy to perform
• economical
• repeatable

Convert Test 
Results to 

Fundamental 
Properties

Relate 
Properties w/ 

Exposure
Conditions

Establish
Performance
Grade and 
Measure

Example:
• Measure ρ
• Account for 

Pore Solution
• Determine 

F- Factor

Set Performance 
Limits and Use 
Tests to Measure 
to Insure That You 
Received What 
you Specified

Use Exposure, 
Material 
Properties, and 
Models to 
Estimate 
Performance Ba
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Shrinkage and Shrinkage Cracking
• Durability is key 
• Transverse cracking in 

100,000+ bridges
• 62% of DOT’s consider 

cracking as a problem 
(NCHRP)

• Cracks shorten service life, 
increase maintenance, and 
accelerate corrosion

• Increase in HSC 
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Here we see cracks spaced at 2.5 ft 
on the approaches to a bridge
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• Looking at 
shrinkage of the 
components

• Aggregate generally 
don’t shrink 

• Paste is the portion 
that shrinks

• Shrinkage is a paste 
property

• SRA/IC different

Shrinkage of Components
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Volume of Paste is One 
Approach – V Paste

• Dutron (1956) shares data
• L’Hermite (1960 no 

influence of the w/c)
(We can shown this 
is due to PSD)

• Pickett (‘65) and 
others work on eqn

• SRA, IC change this
approach doable)

( )nAggPasteConcrete V−= 1εε
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Probability of Cracking
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Results Of An Alternative Approach 
to Consider Variability in Shrinkage

• Plotted the 
percentage 
of specimens 
cracked by 
a specific age

• Results 
of 10,000 
simulations

• Can quantify risk or 
total probability
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Probability Based Shrinkage Specification
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• Shrinkage can be related to cracking potential and this simple 
approach begins to relate a simple test to performance
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Dual Ring Test (AASHTO Approved)
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Four Step Approach
Toward Performance

Assess 
Performance 
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Tests

Convert Test 
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4

5

2
1

3

Develop the Sorption 
Based Modeling Concept
Relating the saturation level in concrete to 
a theoretical critical limit of saturation 

Develop Testing Procedures to 
Evaluate Concrete Mixtures
Developed Testing for Critical Saturation, 
Absorption, and Degree of Saturation

Evaluate Properties of 
Typical Paving Mixtures 
Measuring typical values of the 
properties of typical pavements 

Add in Statistical Variation
To Assess Reliability  
Using Monte Carlo Simulation of Measured
Properties to Relate Variability to Life

Work with SHA’s on Shadowing
Field Projects for PEM/PRS
Implementing Shadow Specifications in 17/18

Toward FT SLM
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High Saturation - Damage
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Neutron Radiography
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Sorption Based Freeze-
Thaw Model
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Sorption Based Freeze-
Thaw Model
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FT Service Life Model
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• Design Mixture 
– 0.42 w/c
– 6% Air
– 564 lb cement
– Fine Aggregate 

• Lets Assume
Variations
– w/c 5% 

(0.38 to 0.46)
– Air 15% 
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Four Step Approach
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Resistivity Test Becoming Popular 

• Fast (seconds to minutes)
• Low cost ($2-2500 dollars)
• Portable (put it in your pocket)

• However resistivity is not a fundamental
measurement and we can do better
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Resistivity as a Test, F Factor Spec

• Related to pore volume (φ)
• Related to pore connectivity (β)

===
φβρ

ρ 1

O

F
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What is the Formation 
Factor

• Measure of the pore structure of concrete
• 1/F is related to 

fluid permeability

• Can be related to 
fluid sorption as well

• Can be related to 
diffusion
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What is the Formation 
Factor

• Measure of the pore structure of concrete
• 1/F is related to 

fluid permeability

• Can be related to 
fluid sorption as well

• Can be related to 
diffusion

Sat = 1000; Sealed = 500; S = 80%, n = 3

Sat = 2000; Sealed = 1000; S = 80%, n = 3
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Resistivity and RCPT

• We can fundamentally relate 
RCPT and resistivity

• This is written as F-Factor which shows
errors in RCPT if p soln is not known
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leaching as well as RCPT overheating

𝑄𝑄 = 𝑉𝑉
𝐴𝐴
𝐿𝐿 𝑑𝑑

1
𝜌𝜌0

1
𝐹𝐹 = 60𝑉𝑉

8107 𝑚𝑚𝑚𝑚2

50.8 𝑚𝑚𝑚𝑚 21,600 𝑠𝑠
1
𝜌𝜌𝑜𝑜

1
𝐹𝐹 =

206,830 𝑉𝑉 𝑚𝑚 𝑠𝑠
𝜌𝜌𝑜𝑜

1
𝐹𝐹 W

ei
ss

 e
t a

l. 
20

16



Performance Specs December 7th 2017 – jason.weiss@oregonstate.edu © Slide 30 of 39

F Factor and Absorption

• One advantage of the Formation Factor is that it can 
be related to other transport properties directly.

• In a recently submitted paper we demonstrate that the 
mass of absorbed water (M) is related to (F-0.5)

• Derived from first principles
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Absorption
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Typical Results

Moradllo et al. submitted
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F Factor and DApparent

• Frequent criticism of F-Factor - it doesn’t include binding
• While this is true (neither does any electrical measure) it 

can be shown that F Factor can easily be combined with a 
binding isotherm to predict performance

• Nernst Plank

• Binding
𝑐𝑐𝑏𝑏 = 𝛼𝛼 � 𝑐𝑐𝐶𝐶𝐶𝐶𝛽𝛽

Ji = −𝐷𝐷𝑜𝑜
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𝑆𝑆𝐶𝐶 grad𝑐𝑐𝑖𝑖 + 𝑐𝑐𝑖𝑖grad ln 𝛾𝛾𝑖𝑖 + 𝑧𝑧𝑖𝑖𝐹𝐹

𝐴𝐴𝑅𝑅
𝑐𝑐𝑖𝑖grad𝜓𝜓

Binding Isotherm

Free Chloride               

Bo
un

d 
Ch

lo
rid

e 



Performance Specs December 7th 2017 – jason.weiss@oregonstate.edu © Slide 34 of 39

Chloride Diffusion

• Here we see that combining 
the F-Factor and binding is 
very powerful 

• This does a good job at 
predicting chloride ingress

• This is much faster than 
ASTM 1556 

• Further binding is a qualification
test and F is a QC/QA test
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National PFS Underway

Unify 
Transport 

Tests and F 

Goal:
complete theoretical 
framework to enable 
F-factor to replace 
existing transport 
tests first principles

GEMS &
Reactive 
Transport 

Water 
Transport &
Implications

Rapid Test 
for Water 
Content

Goal:
Use computational 
models to simplify 
and complement 
field testing

Goal:
Use test methods to 
measure water 
content before 
placemeent

Goal:
Use quantitative 
neutron radiography 
to better understand 
moisture content 
and movement W
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Water Transport

Unify 
Transport 

Tests and F 

Goal:
complete theoretical 
framework to enable 
F-factor to replace 
existing transport 
tests first principles

GEMS &
Reactive 
Transport 

Goal:
Use computational 
models to simplify 
and complement 
field testing

Curing 
and its

Implications

Goal:
Use quantitative 
neutron radiography 
to better understand 
curing

• Instead of using individual
coefficients, use a single
hydration product

• This enables the volume of 
hydration products to be determined
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Typical Results –
Duration of Curing
• DOH increased 24% in 

the top 5 mm of plain 
samples by extending the 
wet burlap duration from 
1 to 3 days. 

• Sealed plain samples had 
3.2% greater hydration at 
the core than the 
samples exposed to 
drying at 1 day 
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Rapid Water Content

• Working on a test method that can be 
used for fresh concrete

• Very comfortable with it in the lab, 
additional work is needed to make sure it 
is robust and ready for the field

• At the current time we know that 
temperature corrections are very 
important as well as the role of ionic 
species which we are working on

Unify 
Transport 

Tests and F 

Goal:
complete theoretical 
framework to enable 
F-factor to replace 
existing transport 
tests first principles

Rapid Test 
for Water 
Content

Goal:
Use test methods to 
measure water 
content before 
placement
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Main Thoughts – Are We 
Ready ? 

• Water to cement ratio (w/c)
– Historically – w/c is specified (pore volume and connectivity)
– Performance – The formation factor can measure transport
– w/c to resistivity to F Factor 

• Air content
– Historically – A table was created based on empirical performance
– Performance – New tests exist, new predictive methods exist for 

saturation and salt and we can begin to link these together
• Shrinkage methods are ready based on models or tests
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